Tuesdays 10:30 - 11:30 | Fridays 11:30 - 12:30
Showing votes from 2021-06-04 12:30 to 2021-06-08 11:30 | Next meeting is Friday Jul 25th, 11:30 am.
The $\Lambda$CDM cosmology passes demanding tests that establish it as a good approximation to reality, but it could be improved. I present a list of possibly interesting and less well explored things that might yield hints to a better theory.
In the late 1990's, observations of 93 Type Ia supernovae were analysed in the framework of the FLRW cosmology assuming these to be `standard(isable) candles'. It was thus inferred that the Hubble expansion rate is accelerating as if driven by a positive Cosmological Constant $\Lambda$. This is still the only direct evidence for the `dark energy' that is the dominant component of the standard $\Lambda$CDM cosmological model. Other data such as BAO, CMB anisotropies, stellar ages, the rate of structure growth, etc are all `concordant' with this model but do not provide independent evidence for accelerated expansion. Analysis of a larger sample of 740 SNe Ia shows that these are not quite standard candles, and highlights the "corrections" applied to analyse the data in the FLRW framework. The latter holds in the reference frame in which the CMB is isotropic, whereas observations are made in our heliocentric frame in which the CMB has a large dipole anisotropy. This is assumed to be of kinematic origin i.e. due to our non-Hubble motion driven by local inhomogeneity in the matter distribution. The $\Lambda$CDM model predicts how this peculiar velocity should fall off as the averaging scale is raised and the universe becomes sensibly homogeneous. However observations of the local `bulk flow' are inconsistent with this expectation and convergence to the CMB frame is not seen. Moreover the kinematic interpretation implies a corresponding dipole in the sky distribution of high redshift quasars, which is rejected by observations at 4.9$\sigma$. The acceleration of the Hubble expansion rate is also anisotropic at 3.9$\sigma$ and aligned with the bulk flow. Thus dark energy may be an artefact of analysing data assuming that we are idealised observers in an FLRW universe, when in fact the real universe is inhomogeneous and anisotropic out to distances large enough to impact on cosmological analyses.
Primordial black holes (PBH) could account for all or part of dark matter, as well as for some LIGO events. We discuss the spins of primordial black holes produced in different cosmological scenarios, with the emphasis on recently discovered possibilities. PBHs produced as a horizon-size collapse of density perturbations are known to have very small spins. In contrast, PBHs resulting from assembly of matter-like objects (particles, Q-balls, oscillons, etc.) can have large or small spins depending on their formation history and the efficiency of radiative cooling. Gravitational waves astronomy offers an opportunity to determine the spins of black holes, opening a new window on the early universe if, indeed, some black holes have primordial origin.